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Approximate calculation of the matrix elements of
Coulomb and exchange operators for the ‘‘core”
electrons of the atoms K through Zn
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A method which allows to approximate the Coulomb and exchange integrals
employed in valence-electron-only SCF calculations with a few parameters,
as described in a previous paper, is extended to the atoms from K to Zn. All
the necessary parameters for these atoms are given. Extension to other atoms
is in progress.
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1. Introduction

It is a well established fact that the valence electrons are the ones mainly
responsible for chemical behavior of the molecular species, while the core elec-
trons (i.e. the inner closed shells of each atom) remain localized on their atom.
Starting from this consideration, in order to simplify the computational effort,
effective potentials have been introduced to replace the effect of the core electrons
on the valence electrons. This approach, which dates back to the beginning of
Quantum Chemistry [1-3], has been refined by the introduction of the
pseudopotential of Phillips—Kleinman [4] and its generalizations [5], and, applied
with different kinds of effective potentials [6-15], has proved to be capable of
giving nearly the same accuracy in predicting molecular properties of the valence
electrons, as all-electron calculations.

The equations which the valence orbitals must fulfil in this scheme lead to an
operator, of which they must be eigenfunctions, which can be written in the
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Phillips—Kleinman form:

Core

F=h+G.+G,+ Y (s,—¢&)P (1)

where h'is the one-electron Hamiltonian, G, and G, include the Coulomb and
exchange operators generated respectively by the core and valence electrons. The
last term in (1), where P,=|p;X¢;|, is properly called the Phillips—Kleinman
pseudopotential and prevents the valence electron orbitals from collapsing in the
core region. The most ponderous matrix to calculate in this framework is that
related to G. operator which contain a very large number of two electron terms
which account for the core-valence interaction. For this reason in past years many
approximate potentials U,(r) such as the integrals {¢,|U,|¢,) are as close as
possible to the exact values {(¢,|G.|@,) have been proposed by several authors.
In a recent paper, hereafter referred to as [19], we have proposed an expression
which, using only a few parameters, approximates the Coulomb and exchange
terms of G, and maintains the nonlocal character of the exchange operators. The
necessary parameters for the atoms of the first and second row were reported
there; now we present the results for the third row’s atoms K through Zn, along
with the potential energy curves of some states of the radical CaCl calculated by
means of our approximation.

2. The effective potential

The expression we have proposed in [19] to approximate the matrix elements
(¢|G.|¢) takes the exchange and Coulomb terms into account separately. The
latter, calculated with SCF orbitals expanded on a gaussian basis set, turns out
to be a combination of erf and gaussian terms; for this reason we have adopted,
to approximate the Coulomb operator of the core electrons of the K and L shells
of an atom centered on R, an expression like:

- ) MX
ELT;I%}TRC_D +Y d, exp[~by(r—R.)’]. @

Mr
Jc(lf_ RCI) = Z Cs
In order to account for the electrons up to 3s and 3p orbitals of the core of the
atoms K through Zn it is sufficient to extend the expansion to M, =3 and M, =2.
The exchange integrals between the core of an atom and two generic functions
f and g were computed by means of the formula

N
IK|8) =T [Hf(r)g°(r) + Hyf (1)g'(1)] 3)
ij
where the first term in the summation represents the contribution of the spherical

part, while the second term comes out from the p part. Proceeding on the third
row it is necessary to introduce also the d-type functions, so we can generalize

(3) by

FIKID=TT HY 3 finlram(r) @
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Table 1. Parameters to fit Coulomb potentials 2J, by (2) for atoms from K to Zn*

Atom a, a, a, b, d, b, d,

K 16.4369 4.5272 1.1747 15.6923 —12.9936 0.9233 -3.2910
Ca 17.3185 4.8274 1.3197 179115 —13.8834 1.1496 —3.7152
Sc 18.2002 5.1281 1.4324 20.2799 —14.7787 1.3386 —4.0396
Ti 19.0833 5.4281 1.5393 22.7926 —-15.6753 1.5314 —4.3462
v 19.9666 5.7277 1.6436 25.4516 —-16.5739 1.7325 —4.6449
Cr 20.8505 6.0268 1.7461 28.2553 —17.4743 1.9425 —4.9381
Mn 21.7338 6.3255 1.8467 31.1976 -18.3750 2.1602 —5.2252
Fe 22.6473 6.6327 1.9347 34.4457 —19.2881 2.3580 —5.4751
Co 23.0844 6.7028 1.9766 36.2513 —19.4686 2.5503 -5.5568
Ni 24.1490 7.1725 2.1257 40.1994 ~20.9511 2.7970 -6.0197
Cu 26.1225 7.8634 2.3185 46.2664 —23.1011 3.0928 —6.6557
Zn 26.1538 7.8154 2.3491 48.0722 -22.8931 3.4198 -6.6586

#¢,=2 and ¢, = ¢; =8 for all atoms.
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Fig. 1. Plots of 2J (r) for Mn atom: (a) —— calculated by complete SCF core orbitals (b) - - - calculated
by approximating formula (8)
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Table 2. Parameters to fit exchange integrals by (4) for atoms K~Cr

K Ca Sc Ti \Y Cr

K shell

r 0.143570 0.135773 0.128827 0.122553 0.116870 0.111724
H?, 0.207219 0.185322 0.166844 0.150990 0.137311 0.125484
r 0.170772 0.161497 0.153235 0.145772 0.139013 0.132891
Hi, 0.011617 0.010476 0.009500 0.008653 0.007913 0.007266
r —_ — 0.167792 0.159620 0.152218 0.145515
H?, — — 0.001785  0.001630  0.001491  0.001366
L shell

r 0.366216 0.344031 0.324777 0.307645 0.292269 0.278373
HS, 1.834368 1.618855 1.442725 1.294527 1.168367 1.059902
rn 0.532032 0.499803 0.471831 0.446941 0.424604 0.404415
H{l 2.778927 2.122904 1.687847 1.382044 1.155565 0.983185
r — — 0.509854 0.482958 0.458821 0.437005
H%, — — 0.199828 0.177818 0.159496 0.144231
M shell (s and p only)

ry 0.685118 0.625683 0.586526 0.552814 0.523126 0.496695
1Y 1.623257 1.482436 1.389662 1.309788 1.239447 1.176825
H?I 6.474712 5.400048 4.755307 4.215487 3.774865 3.403057

HY, 3.000080 2.502131 2.198755 1.953260 1.749097 1.576818
HY, 2.732742 2.279165 2.002823 1.779204 1.593234 1.436307

r 0.860911 0.786225 0.737022 0.694659 0.657353 0.624141
ry 1.898104 1.733439 1.624957 1.531559 1.449307 1.376082
H}, 4.103957 3.391608 2.918383 2.550184 2.252830 2.007760

Hi, 0.941397 0.777993 0.669441 0.584981 0.516771 0.460555
Hj, 0.382928 0.316461 0.272306 0.237950 0.210203 0.187338

r — — 0.834171 0.786225 0.744002 0.707412
r — — 1.625085 1.531679 1.449421 1.376191
H} — - 1.128699 0.949307 0.820199 0.720251
H3, — —_ 0.100819 0.084796 0.073263 0.064335
H3, — — 0.040223 0.033830 0.029229 0.025667

where N is the number of points used to approximate the exchange integral and
M is the maximum angular momentum quantum number of the atom; moreover

we define:

SinD= % Cinpf(r,,)

and

where S;,(w,) is the value at w, of the spherical harmonic in real form S,
Practically we only need to compute the function f for n, points on a sphere
with radius r, and to sum them after multiplication for the appropriate coeflicients,
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Table 3. Parameters to fit exchange integrals by (4) for atoms Mn-Zn

Mn Fe Co Ni Cu Zn

K shell

y 0.107006 0.102635 0.098608 0.094956 0.091482 0.088304
H?l 0.115110 0.105898 0.097752 0.090646 0.084134 0.078389
T 0.127279 0.122081 0.117291 0.112947 0.108815 0.105034
H 1‘ . 0.006695 0.006186 0.605735 0.005334 0.004969 0.004643
r 0.139371 0.133678 0.128433 0.123677 0.119152 0.115012
HZ, 0.001259 0.001165 0.001079 0.001001 0.000933 0.000870

L shell

r 0.265780 0.254243 0.243703 0.234008 0.225644 0.216784
HS, 0966178 0.884118 0.812331 0.748984 0.696403 0.642788
n 0.386121 0.369360 0.354048 0.339963 0.327812 0.314941
H! 0848150 0.739150 0.650172 0.577070 0.502801 0.464721
r 0.417237 0.399125 0.382579 0.367359 0.354229 0.340320
H?,  0.131061 0.119789 0.109953 0.101300 0.093495 0.086869

M shell (s and p only)

r 0.472974 0.451276 0.431636 0.413667 0.397255 0.382070
ry 1.120622 1.069212 1.022680 0.980105 0.941220 0.905242
HY,  3.085775 2.809138 2.569955 2.360431 2.176846 2.013608
HY, 1.429804 1.301624 1.190798 1.093714 1.008649 0.933012
HS,  1.302394 1.185636 1.084685 0.996253 0.918768 0.849871
r 0.594333 0.567067 0.542389 0.519809 0.499185 0.480104
7 1.310364 1.250249 1.195839 1.146055 1.100585 1.058516
Hi, 1.803180 1.626886 1.477122 1.347851 1.235778 1.137387
Hi, 0.413627 0.373187 0.338833 0.309180 0.283472 0.260902
Hi, 0.168249 0.151800 0.137826 0.125764 0.115307 0.106126
r 0.672675 0.641815 0.613883 0.588327 0.564985 0.543389
ry 1.310467 1.250347 1.195933 1.146145 1.100672 1.058599
H}  0.639446 0.575780 0521120 0.474136 0.433493 0.397839
H?, 0.057118 0.051431 0.046548 0.042352 0.038721 0.035536
HZ, 0.022788 0.020519 0.018571 0.016897 0.015448 0.014178

Table 4. Coefficients C,,,, up to d-type functions for 14 points defined in the text
a=m/T b=\37/T c=V5a/15 d=V157/20 e=157/15

Points
Type 1 3 4 5 6 7 8 9 10 11 12 13 14
s a a a a a a a a a I3 a a a
P- a a a a -a -a -a -a 0 0 0 0 b ~b
Px a ~a -—a a a -a -a a b —-b 0 0 0 0
Py a a -a -a a a —-a -a 0 0 b b 0 0
d.2 0 0 0 0 0 0 0 0 -¢ —-¢ —-c¢ -c 2¢  2¢
d.. d -d -d d —d d d —d 0 0 0 0 0 0
d, d d —-d -d -d -d. d d 0 0 0 0 0
de_ 2 0 0 0 0 0 0 0 0 e e —-e —e 0 0
d d ~d d -~d d —d d -4 0 0 0 0 0 0




164 R. Montagnani and O. Salvetti

Table 5. Exact SCF and approximated by (2) or (4) formulae values of some Coulomb and
exchange integrals®

(@[2 ]0) {o|K. l¢)
Atom @ Exact Approx. Exact Approx.
A% 4s 5.9725 5.9715 0.0345 0.0345
v 3d 16.2830 16.2577 0.4079 0.4079
Mn 4s 6.4229 6.4217 0.0351 0.0351
Mn 3d 18.8383 18.8122 0.4812 0.4812
Ni 4s 7.1196 7.1156 0.0368 0.0368
Ni 3d 22.1782 22.0945 0.5721 0.5721

# SCF orbitals and basis sets from Ref. [18].

Table 6. CaCl potential energy values® of the X 2%, A?[l and B ?S" states obtained by all-electron
(A.E.) and valence-electron-only (V.E.) SCFs

X2zt A%l Bx*
R A.E.|20| V.EP A.E.|20| V.EP A.E. |20| V.EP
0 0 0 0 0 0.0941 0.0945
15 —0.0001 0 — —_ 0.0264 0.0257
12 —0.0001 —0.0001 — — 0.0093 0.0059
10 —0.0124 —0.0075 — 0.0004 0.0099 0.0062
8  —0.0457 —0.0592 0.0024 0.0032 0.0239 0.0308
6  —0.1012 —0.1165 0.0139 0.0172 0.0525 0.0635
5 —0.1229 —0.1222 — 0.0519 0.0794 0.0984
45 -0.1135 —0.0889 0.0675 0.1042 — 0.1426
4 —0.0598 0.0114 — — 0.1364 0.2411

* All energies (a.u.) are referred to molecular dissociation limit.
b Basis: Ca (35, 3p) from Ref. [9], Cl (35, 3p) from Ref. [8].

to get the right contribution f,,(r}) at least up to ! quantum number. As an
example we have used the following 14 points: 7, + 7; are the vertices of the cube
inscribed in the sphere or radius r, 7, + 7, are the meeting points of the same
sphere, on the positive and negative sides respectively, with the x, y and z axis
(in the order). For convenience in Table 4 we report the coefficients C,,,, which
give the right contribution up to d-type functions, for these 14 points. More
details on this method of approximation for the exchange integrals can be found
in Ref. [21].

3. Results

As concerns the atoms K through Zn the expression (2) extended to M, =3 and
M, =2 is a very good approximation to the Coulomb operator of the core
electrons. The necessary parameters to fit 2J.(r) are shown in Table 1, while in
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Fig. 1 the 2J.(r) potential given by SCF orbitals expanded on an extended gaussian
basis set [18] is matched with the approximate potentials calculated for the Mn
atom by means of Eq. (2). The results are equally good for the other atoms.

In Tables 2 and 3 we report the points and the weights needed to approximate
the exchange integrals by Eq. (4). In Table 5 the values of some integrals (¢,|2J,|¢,)
and (¢,|K.|¢,) calculated by the approximating formulae (2) and (4) or of exact
SCFs are compared.

Recently some SCF calculations with large basis sets have been performed on
the radicals CaF, CaCl and MgCl [20]. As a test of our approximation we have
repeated the calculus for the potential energy curves of three states of CaCl
adopting the valence optimized basis from Khan et al. [8] for CI and Topiol et
al. [9] for Ca atom. The results are reported in Table 6 and plotted in Fig. 2. If
we keep in mind that the all-electron curves need a basis set of 75 functions,
while our valence-electron curves come out from only 18 functions basis set, the
good representation obtained is noticeable. The slight lengthening of interatomic
distances (0.2-0.3 a.u.} can be ascribed to basis effects and does not affects so
much the quality of results.

0.10F

E (a.u)
)

o}

Fig. 2. CaCl X 3%, Al and B?3" states: Comparison of the valence-electron-only (M) and
all-electron SCF potential energy curves (——)
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